sábado, 13 de outubro de 2012

Equação do 2° grau

                   Introdução às equações algébricas
Equações algébricas são equações nas quais a incógnita x está sujeita a operações algébricas como: adição, subtração, multiplicação, divisão e radiciação.
Exemplos:
  1. a x + b = 0
  2. a x² + bx + c = 0
  3. a x4 + b x² + c = 0
Uma equação algébrica está em sua forma canônica, quando ela pode ser escrita como:
ao xn + a1 xn-1 + ... + an-1 x1 + an = 0
onde n é um número inteiro positivo (número natural). O maior expoente da incógnita em uma equação algébrica é denominado o grau da equação e o coeficiente do termo de mais alto grau é denominado coeficiente do termo dominante.
Exemplo: A equação 4x²+3x+2=0 tem o grau 2 e o coeficiente do termo dominante é 4. Neste caso, dizemos que esta é uma equação do segundo grau.

                   A fórmula quadrática de Sridhara (Bhaskara)
Mostraremos na sequência como o matemático Sridhara, obteve a Fórmula (conhecida como sendo) de Bhaskara, que é a fórmula geral para a resolução de equações do segundo grau. Um fato curioso é que a Fórmula de Bhaskara não foi descoberta por ele mas pelo matemático hindu Sridhara, pelo menos um século antes da publicação de Bhaskara, fato reconhecido pelo próprio Bhaskara, embora o material construído pelo pioneiro não tenha chegado até nós.
O fundamento usado para obter esta fórmula foi buscar uma forma de reduzir a equação do segundo grau a uma do primeiro grau, através da extração de raízes quadradas de ambos os membros da mesma.
Seja a equação:
a x² + b x + c = 0
com a não nulo e dividindo todos os coeficientes por a, temos:
x² + (b/a) x + c/a = 0
Passando o termo constante para o segundo membro, teremos:
x² + (b/a) x = -c/a
Prosseguindo, faremos com que o lado esquerdo da equação seja um quadrado perfeito e para isto somaremos o quadrado de b/2a a ambos os membros da equação para obter:
x² + (b/a) x + (b/2a)² = -c/a + (b/2a)²
Simplificando ambos os lados da equação, obteremos:
[x+(b/2a)]2 = (b² - 4ac) / 4a²
Notação: Usaremos a notação R[x] para representar a raiz quadrada de x>0. R[5] representará a raiz quadrada de 5. Esta notação está sendo introduzida aqui para fazer com que a página seja carregada mais rapidamente, pois a linguagem HTML ainda não permite apresentar notações matemáticas na Internet de uma forma fácil.
Extraindo a raiz quadrada de cada membro da equação e lembrando que a raiz quadrada de todo número real não negativo é também não negativa, obteremos duas respostas para a nossa equação:
x + (b/2a) = + R[(b²-4ac) / 4a²]
ou
x + (b/2a) = - R[(b²-4ac) / 4a²]
que alguns, por preguiça ou descuido, escrevem:
contendo um sinal ± que é lido como mais ou menos. Lembramos que este sinal ± não tem qualquer significado em Matemática.
Como estamos procurando duas raízes para a equação do segundo grau, deveremos sempre escrever:
x' = -b/2a + R[b²-4ac] /2a
ou
x" = -b/2a - R[b²-4ac] /2a
A fórmula de Bhaskara ainda pode ser escrita como:
onde D (às vezes usamos a letra maiúscula "delta" do alfabeto grego) é o discriminante da equação do segundo grau, definido por:
D = b² - 4ac
                    Equação do segundo grau
Uma equação do segundo grau na incógnita x é da forma:
a x² + b x + c = 0
onde os números reais a, b e c são os coeficientes da equação, sendo que a deve ser diferente de zero. Essa equação é também chamada de equação quadrática, pois o termo de maior grau está elevado ao quadrado.
                    Equação Completa do segundo grau
Uma equação do segundo grau é completa, se todos os coeficientes a, b e c são diferentes de zero.
Exemplos:
  1. 2 x² + 7x + 5 = 0
  2. 3 x² + x + 2 = 0
                 Equação incompleta do segundo grau
    Uma equação do segundo grau é incompleta se b=0 ou c=0 ou b=c=0. Na equação incompleta o coeficiente a é diferente de zero.
    Exemplos:
    1. 4 x² + 6x = 0
    2. 3 x² + 9 = 0
    3. 2 x² = 0

                   Resolução de equações incompletas do 2° grauEquações do tipo ax²=0: Basta dividir toda a equação por a para obter:
x² = 0
significando que a equação possui duas raízes iguais a zero.
Equações do tipo ax²+c=0: Novamente dividimos toda a equação por a e passamos o termo constante para o segundo membro para obter:
x² = -c/a
Se -c/a for negativo, não existe solução no conjunto dos números reais.
Se -c/a for positivo, a equação terá duas raízes com o mesmo valor absoluto (módulo) mas de sinais contrários.
Equações do tipo ax²+bx=0: Neste caso, fatoramos a equação para obter:
x (ax + b) = 0
e a equação terá duas raízes:
x' = 0   ou    x" = -b/a                                                                                                          
                  Resolução de equações completas do 2° grau
Como vimos, uma equação do tipo: ax²+bx+c=0, é uma equação completa do segundo grau e para resolvê-la basta usar a fórmula quadrática (atribuída a Bhaskara), que pode ser escrita na forma:
onde D=b²-4ac é o discriminante da equação.
Para esse discriminante D há três possíveis situações:
  1. Se D<0, não há solução real, pois não existe raiz quadrada real de número negativo.
  2. Se D=0, há duas soluções iguais:
    x' = x" = -b / 2a
  3. Se D>0, há duas soluções reais e diferentes:
    x' = (-b + R[D])/2a
    x" = (-b - R[D])/2a
                 O uso da fórmula de Bhaskara
Você pode realizar o Cálculo das Raízes da Equação do segundo grau com a entrada dos coeficientes a, b e c em um formulário, mesmo no caso em que D é negativo, o que força a existência de raízes complexas conjugadas. Para estudar estas raízes, visite o nosso link Números Complexos.
Mostraremos agora como usar a fórmula de Bhaskara para resolver a equação:
x² - 5 x + 6 = 0
  1. Identificar os coeficientes: a=1, b= -5, c=6
  2. Escrever o discriminante D = b²-4ac.
  3. Calcular D=(-5)²-4×1×6=25-24=1
  4. Escrever a fórmula de Bhaskara:
  5. Substituir os valores dos coeficientes a, b e c na fórmula:
    x' = (1/2)(5+R[1]) = (5+1)/2 = 3
    x" = (1/2)(5-R[1]) = (5-1)/2 = 2
               Equações fracionárias do segundo grau
São equações do segundo grau com a incógnita aparecendo no denominador.
Exemplos:
  1. 3/(x² - 4) + 1/(x - 3) = 0
  2. 3/(x²-4)+1/(x-2)=0
Para resolver este tipo de equação, primeiramente devemos eliminar os valores de x que anulam os denominadores, uma vez que tais valores não servirão para as raízes da equação, pois não existe fração com denominador igual a 0. Na sequência extraímos o mínimo múltiplo comum de todos os termos dos denominadores das frações, se houver necessidade.
  1. Consideremos o primeiro exemplo:
    3/(x² - 4) + 1/(x - 3) = 0
    x deve ser diferente de 3, diferente de 2 e diferente de -2, assim podemos obter o mínimo múltiplo comum entre os termos como:
    MMC(x) = (x² - 4)(x - 3)
    Reduzindo as frações ao mesmo denominador que deverá ser MMC(x), teremos:
    [3(x-3) + 1(x²-4)] / (x²-4)(x-3) = 0
    o que significa que o numerador deverá ser:
    3(x - 3) + 1(x² - 4) = 0
    que desenvolvido nos dá:
    x2 + 3x - 13 = 0
    que é uma equação do segundo grau que pode ser resolvida pela fórmula de Bhaskara. Não existirão números reais satisfazendo esta equação.
  2. Consideremos agora o segundo exemplo:
    (x+3)/(2x-1)=2x/(x+4)
    O mínimo múltiplo comum entre 2x-1 e x+4 é MMC=(2x-1)(x-4) (o produto entre estes fatores) e MMC somente se anulará se x=1/2 ou x= -4. Multiplicando os termos da equação pelo MMC, teremos uma sequência de expressões como:
    (x+3)(x+4)=2x(2x-1)
    x² + 7x + 12 = 4x² - 2x
    -3x² + 9x + 12 = 0
    3x² - 9x - 12 = 0
    x² - 3x - 4 = 0
    (x-4)(x+1) = 0
    
    Solução: x'=4 ou x"= -1
  3. Estudemos outro exemplo:
    3/(x²-4)+1/(x-2)=0
    O mínimo múltiplo comum é MMC=x²-4=(x-2)(x+2) e este MMC somente se anulará se x=2 ou x= -2. Multiplicando os termos da equação pelo MMC, obteremos:
    3 + (x+2)=0
    cuja solução é x= -5
Exercícios: Resolver as equações do segundo grau fracionárias:
  1. x + 6/x = -7
  2. (x+2)/(x+1) = 2x/(x-4)
  3. (2-x)/x + 1/x² = 3/x
  4. (x+2)/(x-2) + (x-2)/(x+2) = 1
fonte: http://pessoal.sercomtel.com.br/matematica/fundam/eq2g/eq2g.htm

Racionalizando denominadores de uma expressão fracionária

Quando o Denominador é uma Raiz Quadrada

Este é o caso mais simples, quando tratamos radicais com índice igual a dois.
Vamos analisar a seguinte fração:

É sabido que podemos eliminar o radical se multiplicarmos por ele mesmo. Vejamos:

Partimos de e chegamos a 5.
A conversão foi realizada em bem mais passos que o necessário, apenas para que você se recorde das principais propriedades da radiciação, que torna a conversão possível.
Então quando temos um radical de índice dois, podemos eliminá-lo multiplicando-o por ele mesmo, pois e além disto, para que nova a fração seja equivalente à fração original, também precisamos multiplicar o numerador pelo mesmo valor:

Neste nosso exemplo é o fator racionalizante da fração, pois a racionalizamos multiplicando ambos os seus termos por tal fator.
Genericamente o fator racionalizante de um denominador é o próprio .


Exemplos






Quando o Denominador é uma Raiz Não Quadrada

Agora vamos tratar um caso cujo índice seja diferente de dois, ou seja, um caso onde não temos uma raiz quadrada.
Observe a fração a seguir:

Neste caso de nada adianta multiplicarmos o radical por ele mesmo, pois não conseguiremos eliminá-lo. Veja o que acontece quando o fazemos:

Perceba que no caso anterior havíamos partido de e passamos por 51, o que nos permitiu chegarmos a 5.
Note que neste caso, porém, partindo-se de chegamos a e como 2 não é divisível por 3, não conseguimos eliminar o radical.
Então o que precisamos fazer?
Obviamente devemos multiplicar o radical, por um outro fator de sorte que consigamos chegar a e não a .
Qual fator é este?
É muito simples. Veja o ponto chave abaixo:

Qual é o número que somado a 13?
É dois, pois 3 - 1 = 2.
Então o fator racionalizante da fração é , pois:

Logo:

Podemos então concluir que o fator racionalizante de um denominador é igual a .


Exemplos






Quando o Denominador é uma Soma ou Diferença de Dois Quadrados

Agora no último caso a ser tratado, veremos como devemos proceder quando no denominador da fração temos uma soma ou diferença de um ou dois radicais com índice igual a 2.
Vejamos a fração abaixo:

Como pode observar, os métodos analisados acima não nos permitem racionalizar este tipo de fração. Para fazê-lo precisamos recorrer a um produto notável, mais especificamente ao produto da soma pela diferença de dois termos.
Mais especificamente, neste produto notável, o produto da soma pela diferença de dois termos é igual ao quadrado do primeiro termo, menos o quadrado do segundo termo. Algebricamente temos:

Conseguiu perceber como podemos utilizar este conceito para racionalizarmos a fração proposta?
Parabéns se conseguiu, mas se não conseguiu tudo, daqui a pouco você estará apto a fazê-lo.
Vamos ver o que acontece quando substituímos a por e b por :

Percebeu agora?
Observe que originalmente tínhamos a expressão que multiplicamos por , perceba que invertemos o sinal, trocamos "+" por "-", se tivéssemos "-", o teríamos trocado por "+".
Como elevamos e ao quadrado, eliminamos assim os radicais.
Como nos casos anteriores, devemos multiplicar ambos os termos da fração pelo fator racionalizante, que neste exemplo é :

Neste último caso o fator racionalizante de um denominador será e vice-versa.


Exemplos




Neste último exemplo convertemos tanto 18 em . 32, quanto 12 em 22 . 3 através da decomposição em fatores primos, que você pode revisar se for o caso. Nós também disponibilizamos no site uma calculadora para a fatoração de números naturais, que pode lhe ajudar muito a entender melhor como funciona o método de decomposição de um número natural em seus fatores primos.

fonte:http://www.matematicadidatica.com.br/RacionalizacaoDenominadores.aspx